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Praha 8, Czechoslovakia 
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Abstract. Any extended integrity basis (EIB) of a finite group can be composed from EIBs of 
irreducible matrix groups defined by irreducible representations of the group in question. 
The EIBS thus defined for irreducible matrix groups relevant to crystal point groups (and in 
virtue also to magnetic point groups) are derived with the use of a previously reported 
algorithm based on the successive use of Clebsch-Gordan reductions. The EIBS of vector 
representation of crystal point groups are derived with the use of these fundamental EIBs. 
Division of invariants into denominator and numerator invariants enables one to find a 
general functional expression of an invariant or covariant with the use of EIBS. A possible 
approach to phase transition theory which goes beyond the usual Landau (polynomial) 
approximation is given to illustrate the use of EIBS. 

1. Introduction 

Functions which transform by ireps (irreducible representations) of physical groups of 
symmetry are necessary in the consideration of classical as well as of quantum 
mechanical models of symmetric systems. Here we shall consider the calculation of such 
functions for the ordinary and magnetic crystal point groups in quite a general form. It is 
well known that systems of polynomial invariants are generated by finite sets called 
integrity bases if the group is finite. The latter have been considered, for the crystal 
point groups, in a number of works and in various contexts (Doring 1958, Smith et a1 
1963, Smith and Rivlin 1964, Spencer 1971, Killingbeck 1972, McLellan 1974, KopskL 
1975, Patera and Winternitz 1975, Bickerstaff and Wybourne 1976). Polynomial 
covariants (the term introduced by Weyl (1946) which we prefer to the more usual 
symmetry-adapted basis) in three-dimensional vector coordinates ( x ,  y, 2)- 
harmonics-have been considered in a large number of papers, starting with Bethe 
(1929), von der Lage and Bethe (1947), Bell (1954), Altmann (1957) to name a few, 
and referring for a more complete list to the monograph by Bradley and Cracknell 
(1972). 

The calculation of various kinds of polynomial and tensorial covariants can be most 
conveniently performed with the use of successive Clebsch-Gordan (CG) reductions. 
To standardise the calculations we gave, for crystal point groups, tables of so-called CG 
products (KopskL 1976a, b) from which one can directly read how to multiply covari- 
ants of different types. The use of these tables is far easier than the use of ordinary tables 
of CG coefficients (Koster et a1 1963). We have used them already for the calculation of 
tensorial covariants for the ordinary and magnetic point groups (Kopskjr 1979a, b), and 
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here we shall use them for the construction of extended integrity bases (EIBS). We have 
discussed the general problem of the construction of EIBS for polynomial algebras on 
which there acts a finite group G in a previous paper (Kopskjl 1979c, hereafter referred 
to as I). It turns out that covariants form linear spaces of infinite dimensions, but that 
these spaces are generated by finite sets of covariants called 'linear integrity bases' 
(McLellan 1974, Kopskjl 1975, Patera et a1 1978) in the sense that any covariant is a 
linear combination of basic covariants with invariants as coefficients of combination. 
Together with the integrity bases of invariants we call these sets the EIBS. 

It has also been shown in I that all EIBS of a given group G can be constructed from 
fundamental EIBS of algebras defined on sets of variables belonging to single ireps of this 
group-the typical EIBS in the language of our work (KopskL 1976a, b). We shall 
amplify this result somewhat; it will be shown that fundamental EIBS are those which are 
defined by irreducible matrix groups. We shall then derive and tabulate the EIBS of 
irreducible matrix groups defined by ireps of crystal point groups (they are the same as 
for magnetic point groups). As an example of the use of EIBS we shall consider a 
possible generalisation of Landau (polynomial and truncated) potentials in the theory 
of structural phase transitions. 

2. Factorisation of polynomial algebra-the typical algebras 

Generally we consider a group G acting on a G-module L,, so that gx EL,. Relation 
g p ( r )  = p ( g - ' x )  extends the operation of G on the algebra B(L,) of polynomials p ( x ) ,  
x EL,. The original G-module L,  splits into minimal ,y,(G)-modules L,,, 

and accordingly the algebra B(L,) can be factorised into a direct product of its 
subalgebras B (L,, ) : 

An EIB of the algebra P(L,,) consists of n algebraically independent invariants 
11, 12, . . . , I,, possibly of a set of numerator invariants El ,  EZ, . . . , E m ,  and of sets of 
ro,-covariants p:"', p:"', . . . , p k ) ,  such that any polynomial invariant J is given by 

and any polynomial covariant p( , '  is given by 

Replacing polynomials in I j  by functions, we arrive at a functional expression for an 
invariant or a covariant. 

All spaces L,, are alike-operator-isomorphic (Hall 1959)-and we can consider 
them as copies of one typical xu (G)-module L,. Quite analogously we conclude that all 
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algebras 9(Laa)  are copies of the typical algebra P(L,). The EIB of the typical algebra 
generally consists of d,  = x , ( e )  = dim La algebraically independent denominator 
invariants I1 (x ( , ) ) ,  12(x(,)), . . . , I ~ , ( X ( ~ ) ) ,  possibly of numerator invariants El(x("'), 
E2(x( , ) ) , .  . . , and of ros-covariants p1 (x ), p$')(x'")),  . . . , p $ d ( ~ ( ~ ) ) .  
Knowing the EIBS of typical algebras for the group G we can at once write those 
invariants and covariants of the EIB of any algebra P(L,) which are copies of the typical 
ones. Among them will be all n = Z, dan, denominator invariants, the copies of 
numerator invariants if any, and the copies of covariants. Furthermore, there will be 
those invariants and covariants which we obtain from the multiplication of subalgebras 
between themselves. Particularly, all invariants thus obtained will be the numerator 
invariants. To get the EIB we have to apply the CG multiplication and eliminate the 
reducible invariants and covariants. The procedure can be carried further: for example, 
the product of subalgebras B(LU1)O B(L,2) is like the product B(Lal)  0 P(Lo3) and so 
on. In the case of abelian groups we get an exceedingly general result in the form of 
typical EIBS for all possible variables (Kopsky 1975), and the procedure of derivation is 
quite clear. 

Let us finally note that for the derivation of EIBS of typical algebras as well as for the 
further multiplication of these algebras we use one table of CG products common to all 
groups of a given isomorphic type. 

( P I  (a) 

3. Irreducible matrix groups 

We can go further in simplifying the approach using the fact that, up to labelling of ireps 
and up to equivalence of ireps within each relevant class of them, the EIB of an algebra 
9(L,) is determined by the irreducible matrix group defined by the irep r o u ( G ) :  g + 

D'"'(g). 
Indeed, the irep roa(G) is a homomorphism of G onto certain group of matrices. 

The kernel of this homomorphism, ker To, (G) = Ha 4 G, is that normal subgroup H, of 
G the elements of which are, in the irep rou(G) ,  represented by the unit matrix I, of 
dimension d, : D'"'(h) = I, if and only if h E H,. Elements of the cosets in the factorisa- 
tion G = X;giH, = C;H,gi are, in this irep, represented by the same matrices: yi = 
giH, = Hag; implies that D'"'(g;h) = D'"'(hgi) = D'"'(y;) for h E Ha. The irep rou(G)  is 
therefore a canonical epimorphism which maps the group G onto the matrix group 
rO,(%,), an irreducible faithful matrix irep of a group X, = G/H, isomorphic to factor 
group G/H, with which we simply identify Xu, 

The group 2, has its own set of matrix ireps roo(%',) or its own typical matrix 
representation 

Each of these ireps engenders (Jansen and Boon 1967) a matrix irep roP(G) by 
assigning the same matrix D(')(y;) to all elements of the coset yi = giH, = Hagi. The 
space La can be considered as an Xa-module, especially the ,ya (Za)-module, as well as 
a G-module, especially the ,ya (G)-module. Quite analogously, any ,yp(2,)-module can 
be considered as a Xe(G)-module; this is a procedure of lifting from group %, to group 
G. The algebra 9(L,) is then an %,-module, and as such it splits into ,yP(Xo)-modules 
which can be described in terms of rOB(X,)-covariants forming the EIB. Each roo(%',)- 
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covariant can be, however, considered as a rOp (G)-covariant, the algebra B(L,) can be 
considered as a G-module, and the EIB of B(L,) is (maybe up to labelling) independent 
of whether we consider it as an %',-module or as a G-module. In fact G may mean any 
group which is a normal extension (Hall 1959) of any group H, by the factor group Xu. 
In practice, however, it may happen that the labelling of ireps of the group G does not 
coincide with the labelling of ireps of Xa, in which case correlation of labelling is 
necessary. An obvious conclusion from this consideration is that the polynomials on L, 
generate only those rop(G)-covariants for which the irep rop(G) is engendered by some 
irep r,,@(%',). These are just those ireps of G which are induced by the identity irep of 
H,, or equivalently, as follows from the Frobenius reciprocity theorem, those which 
subduce the identity irep of Ha as many times as is their dimension. On the other hand, 
each of these ireps is generated by r,,,(G) because, as an irep of the factor 
group %',, the latter is faithful. 

This relation is, in the theory of Molien series, reflected by the fact that 

is (provided the labelling is correlated) the same in G as in Xa. Indeed, the terms in the 
sum are all .the same; in the case of group G every term appears [G : H,] times ([G :Ha] 
being the index of H, in G) ,  but the order N of G is just [G : H,] times the order of Xu. 
We shall illustrate the situation in 9 5 .  

4. The crystal and magnetic point groups 

It can be easily found by inspection that there are, with the exception of the trivial group 
T1(C1) consisting of unity only, 12 non-equivalent irreducible matrix groups from which 
all ireps of crystal and magnetic point groups can be composed. In this enumeration we 
consider a pair of one-dimensional mutually conjugate complex ireps of cyclic groups 
(and of groups of Laue class T) as one physically irreducible (reducible in a complex 
field, but irreducible in a real field) irep because they have the same kernel and describe 
a doubly degenerate mode. The EIBS of these 12 irreducible matrix groups are given in 
table A1 of the Appendix. The calculations were performed with the use of the 
algorithm described in I on the basis of CG tables given by Kopskjl (1976a, b); the 
numerical labelling of ireps and the choice of matrices and symbols for typical variables 
are the same as in the latter work. The symbol at the left upper corner of each part of the 
table specifies the irreducible matrix group as a faithful matrix irep of a group of proper 
rotations or of a centrosymmetrical group. The first row lists the other ireps of this group 
and the typical variables with labelling corresponding to this group. The polynomial 
covariants are given in the corresponding columns; to save space we do not list the linear 
covariants, and the numerical labels are dropped in the polynomials. For cyclic and 
dihedral groups C,, D, we give the EIBS for two choices of typical representations-the 
complex and the real one. It should be mentioned that whenever we join two conjugate 
complex ireps To,(G) and r&(G) into one physically irreducible irep RY)(G) ,  the 
resulting RI''-covariant is not unique; namely, if (x,, y,) is an RI''-covariant, then so 
also is (y,, -x , ) .  We have already discussed this consequence of Schur lemma I1 in 
connection with the standard transformation from complex variables to real ones 
(Kopskjl 1976b). Of the two RI''-covariants we give always only one. 
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The denominator invariants are distinguished by underlining. As shown in I, our 
derivation yields the minimal integrity basis. If the number of invariants exceeds d,, 
then certainly there are numerator invariants. In all cases we get them easily by 
checking algebraic relations. Due to the simplicity we do not give the syzygies here. 

With the use of these typical EIBS we calculated the EIBS for vector representations 
of the 32 ordinary point groups. These are given in table A2 of the Appendix. The 
choice of ireps of non-centrosymmetrical groups is related to the choice of the proper 
rotation group to which they are isomorphic, so that elements with the same rotational 
part are represented by the same matrices (compare with a standard choice of ireps for 
tensorial covariants (Kopskjr 1979a, b)). The r-labelling is correlated in table A2 with 
the usual spectroscopic notation of Heine (1960). 

5. Examples 

5.1. Irreducible matrix groups 

Let us consider an irep. R y ) ( x 3 ,  y 3 )  of the group D3; it is faithful, and olynomials in 

group D6 is defined by the same matrices as R$"(x3, y 3 )  of D3, with the difference that 
the unit matrix I2 represents now the unit element e and twofold rotation 2, of 
D6: ker Ry) = {e ,  2 = } .  The factor group D6/C2 is accordingly isomorphic to D3, and 
each matrix of R Y )  corresponds to two elements of ~ 6 .  Analogously ker RL'" ( ~ 6 h )  = 
{e, 2,, i, m,},  ker R:"(0) = { e ,  2,, 2,, 2 , )  = DZ and ker R:"+(oh) = Dzh, where all factor 
groups D6h/CZh, O/Dz, Oh/Dth are isomorphic to D3. All these ireps generate the 
identity irep itself and one one-dimensional irep of the group in question, and the EIBS 
for them are represented by the EIBS of P(x3, y?). 

A useful example are the two ireps r:''-Gi, y 4 ,  24) and I'k')-(x;, y ; ,  2;) of the 
group o h .  Both are faithful and consist of the same matrices, but the mapping of o h  

onto the matrix group is different. From the CG table we have ( x i ,  y ; ,  z;) = x t  ( x i ,  y4,  
24) and conversely ( x i ,  y4, zi) = x t ( x ; ,  y ; ,  2;). Since (x2f)'is an invariant, we see at 
once that even degrees of r4, r; form the same covariants of even parity, while odd 
degrees differ as if the covariants are multiplied by x i .  Investigating this situation 
closely we shall find that it is due to an outer automorphism of o h  which leaves invariant 
the subgroup Th and exchanges the cosets (0-T) and i(0-T). In terms of typical 
variables, this automorphism leaves all even-parity variables unchanged and reshifts 
the odd-parity ones as shown in table A l .  

One-dimensional ireps have a special position in this scheme. The kernel of a direct 
sum of these ireps is the derived group H of G (commutator group of G), and the factor 
group G / H  is abelian. For the abelian group we are able to express the EIB in its typical 
form involving all variables. So, for example, the group D4-4,2,2,, has derived group 
CZ = {e ,  2,) with factor group DJCz = {e, 2,) + {4,, 4;'}+ {2x ,  2 , )  + {2,,, 2,g} iso- 
morphic to DZ. The EIBS of all algebras which do not contain variables transforming as 
( x 5 ,  y 5 )  can be found at once from the typical EIBS of the group DZ (Kopskg 1975): 

x 3 ,  y 3  provide covariants to ireps r l ( x l )  and r 2 ( x 2 )  of D3. The irep R5 t R  ( x 5 ,  y ~ )  of the 
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5.2. E x t e n d e d  integrity bas i s  Of . 9 ( x 5 ,  y 5 )  for the  group  D4 

Let us first reproduce the table of CG products for D4: 

x: x: x: x 3 x 4  x 2 x 4  1 2 x 3  X2(YS> -4 
x:+y: X S Y S  - YSXS x:-ys XSYS+YSXS XJ(X5, -Ys) 

X4(YSr x 5 )  

The steps of the algorithm are as follows: 1s t  degree .  Only the basic linear covariants 
( x ,  y ) = ( x 5 ,  y5)(further we drop indices 5 ) .  2nd degree .  The CG table provides an 
invariant Io = x 2  + y 2 ,  r3-covariant x 2  - y 2  and r4-covariant x y .  3 r d  degree .  We get one 
reducible I?:”-covariant a.  = Io(x,  y )  = ( x 3 + x y 2 ,  y 3 + x 2 y ) ,  and from CG products we 
obtain R:”-covariants a l = ( x  - y 2 ) ( x ,  - y ) = ( x  - x y  , y - x  y )  and u z = x y ( y , x ) =  
( x y 2 ,  x ’ y ) .  There is a linear relation al + 2az = a. so that uo is the basis of reducible 
covariants and one of al ,  uz suffices to complete the basis; we take a l  + a z  = ( x 3 ,  y 3 ) .  
4 t h  degree .  From ( x 3 ,  y 3 )  we get at once the irreducible invariant I I  = x 4  + y 4 .  The al ,  uz 
produce invariants ( x 2  - y2)’ and x 2 y z  which have the same relation with 11, I: as u l ,  az 
have with a l + a z , a o .  The rz-covariant x 3 y - y 3 x  is irreducible, and no other r2- 
covariant is produced because the product of ( x ,  y )  with uo vanishes. The r3- and 
r4-covariants x 4  - y 4  = Io(xz  - yzz) and x 3 y  + x y 3  = I o x y  are reducible, and again there 
are no others because ( ( x y  , x ’ y ) ,  ( x ,  y ) ) 3  = 0, ( ( x 3 - x y 2 ,  y 3  - x 2 y ) ,  ( x ,  Y ) ) ~  = 0. 
5 t h  degree .  There remains only one irreducible rz-covariant in the table which gives the 
R:”-covariant ( x 3 y 2 - x y 4 ,  x z y 3 - x 4 y ) .  We find easily that this is a difference of 
reducible covariants IO(x3,  y 3 )  and I l (x ,  y ) ,  which, together with the third reducible 
covariant I i ( x ,  y ) ,  form the full basis of 5th-degree I?:”-covariants. 

Z 3 2 3  z 

5.3. E x t e n d e d  integrity bas i s  of vec tor  representation of D4 

First we find by inspection that components of vector ( x ,  y ,  z )  transform under D4 as 
z = xz and ( x ,  y )  = ( x 5 ,  y 5 ) .  The EIB of 9 ( x ,  y )  is a copy of the EIB of 9 ( x 5 ,  y 5 )  and 
consists of denominator invariants x 2  + y 2  and x 4 +  y 4 ,  rz-covariant x y ( x 2  - y 2 ) ,  r3- 
covariant xz  - y 2 ,  r4-covariant x y ,  and two I?:”-covariants ( x ,  y )  and ( x 3 ,  y 3 ) .  The EIB 
of 9 ( z )  is a copy of that of ~ ( x z )  for the group Cz (recall that ker r2(D4) = C4, D4/C4 = 
C,) and consists of denominator invariant z 2  and rz-covariant 2. Multiplying 
P(x,  y ) @ B ( z )  according to the table of CG products we get in addition a numerator 
invariant x y z ( x 2  - y’ ) ,  r3-covariant x y z ,  r4-covariant (xz - y 2 ) z ,  and two I?:‘)- 
covariants z ( y ,  - x )  and z ( y 3 ,  - x 3 ) .  Except for the last R?’-covariant all of them are 
clearly irreducible. To check the irreducibility of z ( y 3 ,  - x 3 )  we have to compare it with 
reducible covariants of the same overall homogeneous degree (1 in z and 3 in ( x ,  y)).  
There is only one such covariant, namely ( x 2 + y 2 ) ( y ,  - x ) z ,  and z ( y 3 ,  - x 3 )  is also 
irreducible. 

6. Use of extended integrity bases in phase transition theory 

In the usual Landau model of phase transitions one uses truncated thermodynamic 
potentials. Let us consider, for example, possible transitions from the group D4 with the 
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transition parameter belonging to the two-dimensional irep. One finds easily the 
macroscopic tensorial meaning of typical variables: x 2  =Pz ,  x 3  = Au = u1- u2, x 3  = U69 
and ( x s ,  ys) = (P,, Py) = (u4, us) ,  where P is the polarisation and U the deformation 
tensor. The symmetry D4-4, 2,2, ,  forbids non-zero polarisation and allows defor- 
mation components u3 and u1 = u2. Let the transition parameter be the polarisation. 
Then we shall write the usual Landau (truncated polynomial) potential as 
A o ( T -  Tc)(P: + P t ) + A l ( P :  + P ; ) + A , P : P :  + . . . +BOP: +B,P: + . . . + c o u 6  2 

+C1u2 + . . . + D o ( A u ) 2 + D l ( A u ) 4 +  . . . +Eo(u$ + u : ) + E ~ ( u :  +U:) 

+ E2u$u: +coupling terms. 

Using integrity bases we can write the potential compactly in the form 

fo(Po, P i ) + f i ( P I ) + f 2 ( U ; )  +f3(Au2)+ U6PxPyg(Po, Pi) 

+ A u ( P ;  -P;)h(Po, P1)+PzP,P,(Pf - P ; ) k ( P o , P l )  

where Po =PI +P:, P 1  = P: +P;,  f i ,  g ,  h, k are functions. This form is not quite a 
general invariant function, but it contains all coupling terms of primary importance, and 
function f o  gives the most general invariant function of the transition parameter. One 
sees, for example, that solutions P, = 0, Py = 0 (transition into symmetry 2, ,  2, 
respectively) lead to U 6  = 0, P, = 0; solutions P, = P,, P, = -P, (transitions into 2,,, 2,, 
respectively) lead to Au = 0, P, = 0; while the general solution leads to non-zero values 
of these variables. These, of course, are conclusions which follow also from symmetry 
considerations without an analysis of the potential. But now we are not restricted to the 
use of the Landau singularity Ao(T  - TJP;  ; the functionfo is also a function of T with a 
certain singularity at T,, and this singularity can be varied. Such model potentials could 
be useful in modern ‘renormalisation’ theories in which, as far as we know, the 
symmetry arguments have not yet been used. 

7. Conclusions 

Extended integrity bases of irreducible matrix groups relevant to crystal point groups 
enable the construction of any such bases. The phenomenology of phase transitions 
provides one of the motivations for their use. The quantum mechanical motivations are 
considered by Patera eta1 (1978). The mathematical content of the results given is very 
exhaustive-we can now express functional invariants as well as covariants in any 
desired set of variables for the crystal and magnetic point groups. 
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Table A2. Extended integrity bases of polynomial algebras on vector representations of 
crystal point groups. 

Triclinic, monoclinic and orthorhombic groups 

Cl-l :  trivial; A-Tl(xl): x, y. z .  

Ci-l: A,-T;(x;): x2, y 2 ,  z 2 ,  xy, yz. zx; A,-T;(x;): x, y ,  z. 

Cz-2,: A-Tl(xl): z, xz,  y2,  xy; B-T2(x2): x, y .  

C,-m,: A'-Tl(xl): x, y, z 2 ;  A"-T2(x2): z .  

CZh-2,/m,: A,-T;(x;): x2, _ _ _  y z ,  z z ,  xy; B,-T;(x;): XI, yz ;  A,-T;(x;):z; B,-T;(x;): x, y .  

_ _ _  

_ _ _  

_ _ _  

D2-2,2,2,: A-Ti(xi): _ - -  x', y2. z', X Y Z ;  Bi - rz (~2) :  Z,  XY;  B3-T3(~3): X, YZ; BZ-T~(X~) :  y ,  ZX. 

C ~ ~ - m ~ m , 2 ~ :  Al-Tl(xJ: z, x2, y2;  A2-T2(x2): xy; Bz-T3(x3): y ;  BI-T4(x4): x. 

D2h-mrmymr: A,-T;(x;): _ _ _  x2, y 2 ,  z z ;  B18-r;(xl): xy; B3,-r;(x;): yz;  Bzg-T:(x:): zx; 
A,-T;(x;): X Y Z ;  Biu-ri(xT): Z ;  B~"-T;(x;): X ;  BZu-r;(Xi): y .  

Tetragonal groups 
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Table A2. (continued) 

Trigonal and hexagonal groups 

s6-3~: A,-T:(x;) :  X 2 + y 2 , Z 2 , x Z ( X 2 - 3 y 2 ) ,  y z ( y 2 - 3 x 2 ) ,  
2 4  

- 
x y ( x 2 - 3 y 2 ) ( y 2 - 3 x 2 ) , x 6 - 1 5 x 4 y 2 + 1 5 x  y - y 6 ;  E,-R$')*(x; ,  y i ) :  z ( x ,  y ) ,  ( x 2 - y 2 ;  - 2 x y ) ,  

(x4 - 6 x 2 y 2  + y 4 ;  4 x y  ( x 2  - y 2 ) ) ;  A,-T;(x; ): I, x ( x 2  - 3 y 2 ) ,  y ( y 2  - 3 ~ ' ) ;  

E,-R:"-(x;, y : ) :  ( x ,  y ) ,  z ( x 2 - y 2 ;  - 2 x y ) ,  ( x 5 -  1 0 x 3 y 2 + 5 x y 4 ;  - y s +  1 0 x 2 y 3 - 5 x 4 y ) .  

C6h-6,/mZ: A, -T ; (x ; ) :  X 2 + y 2 ,  - Z2, X 6 - 1 5 X 4 y 2 + 1 5 x 2 y 4 - y 6 , x y ( x 2 - 3 y 2 ) ( y 2 - 3 x 2 ) ;  
B,-T;(x;): x z ( x 2 - 3 y 2 ) ,  ( y z ( y 2 - 3 x 2 ) ) ;  E2,-R:"+(xs, y5): ( x  2 2  - y  ; - 2 x y ) , ( x 4 - 6 x 2 y 2 + y 4 ;  
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Table A2. (continued) 

Cubic groups 

Vector representation of each cubic group is identical with one of its ireps, and hence the EIBS are 
contained in table A l .  The correspondence of vector representation in spectroscopic notation to our 
r-notation is as follows: T-r4(x4, y 4 ,  24) and T,-Ti(x;, y i ,  z i )  in groups T and Th; T1-rS(x5. y 5 ,  2 5 )  and 
T,,-T;(x;, y ; ,  z ; )  in groups 0 and o h ;  andT2-r4(x4. y 4 ,  2 4 )  in groupTd under the convention that elements 
of Td with the same proper rotational parts are represented by the same matrices as those of 0. 

Warning. The extended integrity bases given are the minimal ones and do not contain all numerator 
invariants. 
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